NarK enhances nitrate uptake and nitrite excretion in Escherichia coli.

نویسندگان

  • J A DeMoss
  • P Y Hsu
چکیده

narK mutants of Escherichia coli produce wild-type levels of nitrate reductase but, unlike the wild-type strain, do not accumulate nitrite when grown anaerobically on a glucose-nitrate medium. Comparison of the rates of nitrate and nitrite metabolism in cultures growing anaerobically on glucose-nitrate medium revealed that a narK mutant reduced nitrate at a rate only slightly slower than that in the NarK+ parental strain. Although the specific activities of nitrate reductase and nitrite reductase were similar in the two strains, the parental strain accumulated nitrite in the medium in almost stoichiometric amounts before it was further reduced, while the narK mutant did not accumulate nitrite in the medium but apparently reduced it as rapidly as it was formed. Under conditions in which nitrite reductase was not produced, the narK mutant excreted the nitrite formed from nitrate into the medium; however, the rate of reduction of nitrate to nitrite was significantly slower than that of the parental strain or that which occurred when nitrite reductase was present. These results demonstrate that E. coli is capable of taking up nitrate and excreting nitrite in the absence of a functional NarK protein; however, in growing cells, a functional NarK promotes a more rapid rate of anaerobic nitrate reduction and the continuous excretion of the nitrite formed. Based on the kinetics of nitrate reduction and of nitrite reduction and excretion in growing cultures and in washed cell suspensions, it is proposed that the narK gene encodes a nitrate/nitrite antiporter which facilitates anaerobic nitrate respiration by coupling the excretion of nitrite to nitrate uptake. The failure of nitrate to suppress the reduction of trimethylamine N-oxide in narK mutants was not due to a change in the level of trimethylamine N-oxide reductase but apparently resulted from a relative decrease in the rate of anaerobic nitrate reduction caused by the loss of the antiporter system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nitrate and nitrite transport in Escherichia coli.

Two polytopic membrane proteins, NarK and NarU, are involved in nitrate and nitrite uptake and nitrite extrusion by Escherichia coli. A third polytopic membrane protein, NirC, functions only in nitrite transport. During exponential growth, the quantity of NarU in membrane fractions was <0.01% of the quantity of NarK. During the stationary phase of growth, the ratio of NarU to NarK increased to ...

متن کامل

Regulation of narK gene expression in Escherichia coli in response to anaerobiosis, nitrate, iron, and molybdenum.

The regulation of the narK gene in Escherichia coli was studied by constructing narK-lacZ gene and operon fusions and analyzing their expression in various mutant strains in response to changes in cell growth conditions. Expression of narK-lacZ was induced 110-fold by a shift to anaerobic growth and a further 8-fold by the presence of nitrate. The fnr gene product mediates this anaerobic respon...

متن کامل

Structural basis for dynamic mechanism of nitrate/nitrite antiport by NarK

NarK belongs to the nitrate/nitrite porter (NNP) family in the major facilitator superfamily (MFS) and plays a central role in nitrate uptake across the membrane in diverse organisms, including archaea, bacteria, fungi and plants. Although previous studies provided insight into the overall structure and the substrate recognition of NarK, its molecular mechanism, including the driving force for ...

متن کامل

The P aracoccus denitrificans NarK‐like nitrate and nitrite transporters—probing nitrate uptake and nitrate/nitrite exchange mechanisms

Nitrate and nitrite transport across biological membranes is often facilitated by protein transporters that are members of the major facilitator superfamily. Paracoccus denitrificans contains an unusual arrangement whereby two of these transporters, NarK1 and NarK2, are fused into a single protein, NarK, which delivers nitrate to the respiratory nitrate reductase and transfers the product, nitr...

متن کامل

Nitrate and nitrite control of respiratory nitrate reduction in denitrifying Pseudomonas stutzeri by a two-component regulatory system homologous to NarXL of Escherichia coli.

Bacterial denitrification is expressed in response to the concurrent exogenous signals of low-oxygen tension and nitrate or one of its reduction products. The mechanism by which nitrate-dependent gene activation is effected was investigated in the denitrifying bacterium Pseudomonas stutzeri ATCC 14405. We have identified and isolated from this organism the chromosomal region encoding the two-co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 173 11  شماره 

صفحات  -

تاریخ انتشار 1991